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Abstract
Two mechanisms of interaction of particles in a fluid are proposed on the basis of
forces mediated by hydrodynamic thermal fluctuations. The first one is similar
to the conventional van der Waals interaction, but instead of being mediated by
electromagnetic fluctuations, it is mediated by fluctuations of hydrodynamic
sound waves. The second one is due to a thermal drift of particles to a region
with a bigger effective mass, which is formed by the surrounding fluid involved
and depends on the inter-particle distance. Both mechanisms are likely to be
relevant in the interpretation of the observed long-range attraction of colloidal
particles, since a set of different experiments show an attraction energy of the
order of kBT and, perhaps, only a fluctuation mechanism of attraction can
provide this universality.

1. Introduction

Charge-stabilized colloidal suspensions exhibit a variety of unusual physical properties [1–3].
Colloidal particles can be organized into crystal [4] and into structures with clusters and
voids [5–10]. A system of colloidal particles may undergo different types of phase trans-
ition [11–17]. Topological phase transitions in two-dimensional systems of colloidal particles
have been reported in [18,19]. In [20] buckling instabilities in confined colloidal crystals were
analysed. Interesting behaviours of colloids in external fields were reported in [21]. Colloidal
particles accept, in an electrolyte, some effective charge screened by counterions at Debye’s
length λD, which is described by the repulsion potential of Derjaguin, Landau, Verwey, and
Overbeek (DLVO) [1, 2]. The DLVO theory, as a result of solution of the linearized Poisson–
Boltzmann equation, has been questioned in [12,22]. The generalization of DLVO interaction
via a modification of counterion screening was reported in [23].

Despite the long history of the problem, the interaction of colloidal particles remains
an area of challenge and controversy. The authors of [12], studying phase transitions in
charged colloidal systems, found a substantial deviation from predictions resulting from a
screened Coulomb interaction. Experimental data [24] suggest a net attraction of particles
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for explanation of the measurements (see also the comment on that work [25]). Later, an
attraction of micron-sized particles separated by a micron-sized distance was established
experimentally. The interaction potential has been found to have a minimum −U0 at a centre-
to-centre particle distance R0 of micron size. In the work [26], colloidal particles, confined
between two glass planes, exhibit U0 � 0.2kBT for different ionic strengths. This type of
experimental arrangement, studied in another laboratory [27], gives U0 � (0.3–0.4)kBT for
different particle diameters and distances between planes. Another study of colloidal particles,
confined between two glass planes, gives U0 � 1.3kBT or less for different particle diameters
and distances between planes [28,29] (see also [30,31]). An attraction of 0.5kBT per neighbour
particle (separated by the micron-sized distance) has been deduced for the colloidal crystal
in [30]. Polystyrene colloidal particles of diameter 0.5 µm at the water–air interface exhibit
U0 � 0.5kBT at R0 � 0.9 µm [32]. For micron-sized colloidal ‘molecules’ at the air–water
interface [7–9], the binding energy can be estimated as a few kT . For bound particles at the
fluid–fluid interface an estimate is U0 ∼ 4kT [33]. As one can see, despite the different
conditions (even particles at interfaces), there is a very stable common feature in all of the
various experiments: the attraction minimum is always of the order of kBT . This leads to the
hypothesis of some common mechanism of micron-sized attraction, which is responsible for the
universality of U0 ∼ kBT . Note that the mean-field energies in colloidal physics (electrostatic
and hydrodynamic) are a few orders of magnitude bigger than kT at room temperature.

Let us analyse some mechanisms of attraction proposed in the literature.
A principal question is that of whether like-charged particles separated by a micron distance

can attract each other due to a solely electrostatic mean-field interaction (for example, by some
charge redistribution) which is not accounted for by DLVO theory. This type of attraction
was predicted in [34]. The results of [34] are not applicable to dielectric particles, only to
those with the electrolyte inside identical to the one outside. The correct calculation of an
interaction of that kind shows only repulsion, in contrast to [34]. An electrostatic attraction
between like-charged particles, based on the mean-field approach, was also predicted in [35],
but that conclusion was incorrect, as shown in the works [36,37]. An attractive potential force
between like-charged particles at a micron distance due to a mean-field mechanism seems to be
extremely unlikely, and the works [36,37] provide strong arguments in support of this statement.

The conventional van der Waals attraction, mediated by high-frequency (visible light)
electromagnetic fluctuations, is very small in the micron range: less than 10−2 T at room
temperature [38–41], and cannot provide the observed attraction. Measurements of this type
of attraction in colloidal systems at short distances, of the order of a few hundred ångströms,
have been performed in [42,43]. An analysis of the attraction at such short distances, including
the influence of the surface roughness, is given in [44–47].

The van der Waals interaction mediated by the low-frequency (of the order of the plasma
frequency) electromagnetic fluctuations decays fast with the distance R between two particles,
as −V0 exp(−2R/λD) [40, 48]. V0 has in our case a thermal fluctuation origin and is less
strong than the electrostatic repulsion energy even at R � λD. The exponential dependence
exp(−R/λD) of the attraction potential in [49], dealing with the same effect, differs from the
above correct exponent [40,48]. The results of [49] cannot explain the attraction at R ∼ 10λD

in [28], because the attraction, reported in [49], is too small at that distance.
The effect of correlation of counterions [50–54] (see also [55–57]) results in their

rearrangement in the vicinity of a colloidal particle—of the order of the mean distance between
counterions, which is less than λD. At that short distance, an attraction is possible as shown
in [50–54]. For positions at long micron-sized distances, the correlation of counterions forms
an effective charge Ze on the particle, which is screened at λD and determines the repulsive
part of the interaction.
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Depletion forces between colloidal particles originate from the influence of the
thermodynamic energy caused by the finite size of the small particles which constitute the
surrounding medium [58–62]. The range of the depletion interaction is determined by the size
of the small particles, which are not necessary ‘small’ as in [61], where the surrounding polymer
coils have macroparticle size. When the surrounding electrolyte contains only microions, the
depletion force is of very short range compared to the micron scale.

In [63] a mechanical effect is proposed for explanation of the observed motion of
particles towards each other, when they move away from a single wall due to the Coulomb
repulsion [30, 31]. This mechanical effect is irrelevant in analysis of the interaction of free
particles in a fluid or ones confined between walls or on interfaces (see also [64]).

As one can conclude, none of the above mechanisms is responsible for the set
of observations of long-distance attraction of colloidal particles (perhaps excepting the
mechanical effect [63], which can be relevant for the particle motion in the one-wall
geometry [30]). An important clue in the search for and selection of possible mechanisms
of attraction is the universality of the depth of the attraction minimum U0 ∼ kBT . The most
probable mechanism, satisfying this criterion, is an interaction mediated by thermal fluctuations
of some physical values. This is a microscopic type of interaction, which can be formulated in
terms of a potential energy. Regardless of the specifics of the fluctuating matter, the free energy
of thermal fluctuations is always proportional to kBT . For example, the attraction potential
of two dielectric particles (refractive index n) in water (refractive index n0) due to thermal
fluctuations of the electromagnetic field is proportional to c(n, n0)kBT . If n is close to n0,
then c ∼ (n − n0)

2, according to the perturbation theory. With real values of n and n0 for
polystyrene and water, the coefficient c is very small, which makes the conventional van der
Waals attraction in the micron range negligible. Nevertheless, if we put formally n → ∞ (zero
field gradient at the surface of the particles), the attraction in the micron range is not small
compared to kBT [38]. This is similar to the situation in hydrodynamics, where fluctuating
electromagnetic waves are replaced by hydrodynamic ones and the fluid velocity is zero on the
particle surface. Hence, one can expect the interaction, mediated by fluctuating hydrodynamic
waves, to not be small like in the electromagnetic case with n → ∞.

The nature of forces mediated by fluctuations of sound waves in a fluid can be clarified in
the following way: the energy of the thermal fluctuations of the fluid depends on the distance
between two particles, which play the role of obstacles to fluid motion, and hence this results in
a force. The non-electromagnetic type of fluctuation force, discussed by Dzyaloshinskii et al
[65], can be considered as some sort of van der Waals [38] or Casimir force [66]. We do not con-
cern ourselves here with the history of the origin of the two names for fluctuation interactions.

In addition to the attraction mediated by fluid fluctuations, there is another mechanism of
fluctuation interaction related to hydrodynamics: this is the interaction mediated by thermal
fluctuations of particle positions in a fluid. The effective particle masses depend on the
fluid mass involved in the motion. The fluid mass depends on the inter-particle distance
and therefore the effective particle masses also depend on that distance. If the mass of a
classical non-dissipative harmonic oscillator depends on the coordinate, the mean coordinate
shifts to the region with bigger mass (smaller velocity), since the particle spends more time
there. Analogously, for a Brownian motion of particles in a fluid, a thermal drift occurs
in the direction of the bigger effective mass. As shown in this paper, the effective particle
mass, which determines the effect, should be calculated on the basis of Euler (non-dissipative)
hydrodynamics and it can be called the Euler mass.

The above fluctuation interactions relate to hard spheres (no mean-field interaction except
an infinite repulsion on contact). If the particles are charged, the total interaction is a sum of
the fluctuation ones and the Coulomb repulsion. This is discussed in section 7.



4832 B I Ivlev

The following results are presented in the paper:

(i) the forces of attraction between two parallel plates and spherical particles with short inter-
surface distance, mediated by hydrodynamic fluctuations of sound waves, are shown to
exist and they are calculated analytically;

(ii) a novel interaction of particles in a fluid is proposed, which is based on the dependence
of their effective masses on the distance between them;

(iii) the Fokker–Planck equation for two particles in a fluid is derived;
(iv) the difference between the measurements of a particle interaction by means of optical

tweezers and a long-time statistics is pointed out and calculated.

2. The hydrodynamic van der Waals interaction

Suppose two particles are placed in a hydrodynamic medium; they are totally fixed in space,
and serve only as obstacles to fluid motion. There is no macroscopic motion in the system
and the only motion is caused by thermal fluctuations of the fluid velocity �v(�r, t). In this case
the free energy of thermal fluctuations of the fluid F(R) depends on the distance R between
bodies. The function

UvdW(R) = F(R) − F(∞) (1)

is an interaction mediated by fluid fluctuations. Analogously to the conventional van der
Waals interaction mediated by electromagnetic fluctuations, the potential (1) can be called the
hydrodynamic van der Waals interaction. To find the free energy of thermal fluctuations of
the fluid, one can start with the linearized Navier–Stokes equation [67]

ρ
∂ �v
∂t

= −�∇p + η ∇2�v +
(
ζ +

η

3

)
�∇ div �v. (2)

There are two types of fluid motion: one of them is a transverse diffusion and the second one is
longitudinal sound waves, associated with the density variation. The equilibrium free energy
of transverse motions is determined by the Boltzmann distribution of their kinetic energies
and does not depend on the friction coefficient in the thermal limit. Since there is no static
interaction for transverse motions, their equilibrium free energy in the thermal limit depends
on the total volume, but not on relative positions of bodies. Therefore, transverse fluctuations
do not result in an interaction. A quite opposite situation occurs for longitudinal motions,
when the total free energy is a sum of energies of different sound modes. The spectrum
of sound waves depends on the distance between bodies R due to hydrodynamic boundary
conditions on the body surfaces, and this results in R-dependence of the free energy. Hence,
the fluctuation interaction between bodies is mediated by hydrodynamic sound waves like the
conventional van der Waals interaction is mediated by fluctuations of electromagnetic ones.
Putting �v = �∇ ∂φ/∂t , one can obtain from equation (2)

ρ
∂2φ

∂t2
= −δp +

(
ζ +

4η

3

)
∂

∂t
∇2φ. (3)

Through thermodynamic relations and the continuity equation, one can obtain δp = −ρs2
0 ∇2φ,

where s0 is the adiabatic sound velocity [67]. At the typical frequency ω ∼ s0/a (a is the
particle radius) involved in the problem, the dissipative term in equation (3) is small, and one
can write

∂2φ

∂t2
− s2

0 ∇2φ = 0. (4)
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For the case of small friction, the boundary condition ∇nφ = 0 on equation (4) corresponds
to the Euler equation [67]. Generally, the free energy of a system of harmonic oscillators does
not depend on friction in the thermal limit.

Let us consider first the case of two infinite parallel plates, separated by the distance R,
when the frequency spectrum has the form [67]

ω2
n(k) = s2

0

(
k2 +

π2n2

R2

)
. (5)

The free energy per unit area of the system now can be expressed as a sum of energies of
independent oscillators:

F = T

∫
d2k

(2π)2

∞∑
n=1

ln
h̄ωn(k)

T
. (6)

This type of interaction has been considered in the literature [39]. The simplest way to calculate
the energy (6) is to divide the whole interval R into small segments a0 = R/N . Then

N∑
n=1

ln

(
k2 +

π2n2

a2
0N

2

)
= 2

N∑
n=1

ln
n

N
+ ln

∞∏
n=1

(
1 +

a2
0N

2k2

π2n2

)
. (7)

Using the relation x
∏∞

n=1(1 + x2/π2n2) = sinh x, the Stirling formula for N !, omitting
constants and R-linear terms, can be obtained from equations (5)–(7):

F = T

2

∫
d2k

(2π)2
ln

[
1 − exp(−2kNa0)

]
. (8)

Now one should put in equation (8) Na0 = R, and after integration we obtain, according to
equation (1), the van der Waals interaction per unit area of two infinite plates:

uvdW(R) = −ζ(3)

16π

T

R2
. (9)

The result (9) enables one to calculate the van der Waals energy UvdW(R) of two spheres
of radii a, separated by the centre-to-centre distance R, when (R − 2a) � a. In this case
the inter-surface distance, measured in the direction parallel to the centre-to-centre line, is
R − 2a + (x2 + y2)/a, where x and y are the coordinates in the plane perpendicular to the
centre-to-centre line. The procedure leads to an integration:

UvdW(R) =
∫

dx dy uvdW

(
R − 2a +

x2 + y2

a

)
. (10)

The result of the integration at (R − 2a) � 2a is

UvdW(R) = −ζ(3)

16
T

a

R − 2a
(spheres). (11)

The interaction energy (11) is calculated under fixed boundaries of particles, which corresponds
to zero sound velocity s of the particle material (infinite acoustic mismatch). Under reduction
of the mismatch, UvdW decreases, going to zero at s = s0, if there are only longitudinal acoustic
modes inside the particles. The sound velocities for polystyrene particles, s � 2.1×105 cm s−1,
and for water, s0 � 1.5×105 cm s−1, provide a finite mismatch, which reduces the result (11),
as one can show, by approximately four times. But in reality this conclusion is not correct,
since transverse acoustic modes of the particle material increase the mismatch, leading the
interaction towards the result (11). An account of the finite mismatch is a matter for further
study, but the exact UvdW seems to be close to the result (11).

The above calculations are applicable, strongly speaking, only to uncharged particles like
hard spheres. For charged particles the electric charge density of a fluid en is finite and decays
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over the Debye length λD. This results in a modification of the spectrum of fluctuations, by
adding the plasma frequency s2k2 + ω2

pn/n0, where ω2
p = 4πne2/εM (M is the mass of the

fluid molecule) and n0 ∼ 1023 cm−3 is the molecular density of the fluid. The coefficient
n/n0 arises from the sound spectrum being formed by the whole fluid, while the Coulomb
gap is determined only by a small number of ions: n ∼ Z/4πaλ2

D ∼ 1017 cm−3 (typically,
Z ∼ 104). Since the wave vector k is inversely proportional to the inter-particle distance,
one can conclude from this that the Coulomb effects modify the above hard-sphere result (11)
when (R − 2a) exceeds 100 µm.

3. The paradox

In the case of the conventional van der Waals interaction, mediated by electromagnetic
fluctuations, the mean values of the electric and magnetic fields are zero 〈 �E〉 = 〈 �H 〉 = 0.
The stress tensor σik for the electromagnetic field is quadratic with respect to fields and hence
the mean value 〈σik〉 is not zero. This makes the origin of the force due to electromagnetic
fluctuations straightforward. The situation with hydrodynamic fluctuation forces is different.
For the linearized Navier–Stokes equation the mean value of the velocity is zero, 〈�v〉 = 0 (the
same holds for the fluctuation part of p). The hydrodynamic stress tensor

σik = η

(
∂vi

∂rk

+
∂vk

∂ri

)
− pδik (12)

is linear in fluctuation variables, its fluctuation part is zero, and the fluctuation force has to
be zero in this approximation. A non-zero contribution to 〈σik〉 can result from the non-linear
terms in the Navier–Stokes equation neglected in the above approach. This non-linearity has
been accounted for in [68], and a finite fluctuation force has been obtained. This result was
shown to be incorrect in [69], where the exact mean value of the stress tensor (12) was found
to be zero on the basis of exact non-linearity of the Navier–Stokes equations. One conclusion
of [69] is that a hydrodynamic fluctuation interaction is impossible, which contrasts with the
result (9). What is going wrong?

To understand the situation, let us consider the linear chain of small particles, connected
by elastic springs, shown in figure 1 and described by the dynamic equation

∂2un

∂t2
= s2

b2
0

(un+1 + un−1 − 2un) (13)

where s is the sound velocity and b0 is the period. Two unmoving big particles substitute
for small particles, as shown in figure 1. The system is elastic and the force acting on a big
particle, placed on the site n, is

Fn = ms2

b2
0

(un+1 − un−1). (14)

Here m is the mass of a small particle. The free energy of the fluctuation motion of
the small particles UvdW is determined by a sum over self-frequencies ωi of the system
F = T

∑
ln(h̄ωi/T ), resulting in

UvdW = T

2
ln 4N (15)

where N is a number of springs between two big particles. Two different positions of big
particles, ‘natural’ in figure 1(a) and ‘compressed’ in figure 1(b), have identical self-frequencies
since the system is harmonic and hence U

(a)
vdW = U

(b)

vdW (equal to N in equation (15)). In this
situation there is no van der Waals force, which is clear, since the mean value of the linear
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(a)

(b)

(c)

Figure 1. The linear chain of particles. Each horizontal segment between particles behaves like
an elastic harmonic spring. The configuration (a) represents the ‘natural’ positions of two attached
particles (open circles). The configuration (b) is obtained from (a) by a compressive motion of
the attached particles without a destruction of harmonic bonds. (c) is another ‘natural’ position
obtained from (a) by a destruction of harmonic bonds.

force (14) should be zero. On the other hand, for another ‘natural’ position in figure 1(c), the
self-frequencies differ from those in figures 1(a) and (b); in this case U

(a)
vdW 
= U

(c)
vdW (different

from N in equation (15)) and the van der Waals force is non-zero. This is a consequence of the
fact that a transition from the position (a) to the position (c) in figure 1 cannot occur within a
harmonic approximation; one should destroy some harmonic springs and rearrange them again
in a different way. The linear expression for force (14) is not valid for describing a transition
from (a) to (c) and a real force is non-linear, which makes its average finite even for 〈un〉 = 0.

An analogous situation takes place in hydrodynamics. According to its derivation,
equation (9) is valid only for discrete R = Nb0, where b0 is the inter-atomic distance and
N is an integer number. The full dependence of uvdW on R has a structure on the atomic
scale corresponding to removal of discrete atomic layers from the inter-plane region. The
hydrodynamic expression for the stress tensor (12) is not valid at such a short scale—like
equation (14) cannot describe the breaking of harmonic bonds. In contrast to the smooth
van der Waals potential mediated by electromagnetic fluctuations, the interaction mediated by
hydrodynamic ones has a structure as a function of distance on the atomic scale, superimposed
on the smooth function (9). To some extent, this is analogous to the observation of the structured
interaction potential [62], where the role of atoms was played by small particles. The resulting
statement is that the hydrodynamic expression for the stress tensor (12) cannot be used for
calculation of fluctuation forces since it becomes non-linear (and contributes to those forces)
at short distances where the hydrodynamic approach is not valid. Hydrodynamic fluctuation
forces should be calculated on the basis of energy as is done in this paper. The conclusion
of [69] of the absence of hydrodynamic fluctuation forces based on use of the hydrodynamic
stress tensor is incorrect.

4. Interaction mediated by fluctuations of particle position

The hydrodynamic van der Waals interaction is formed by fast density fluctuations with a
typical frequency ωL ∼ s0/a ∼ 109 s−1. Besides this longitudinal motion, there are also
slow transverse fluctuations of the fluid driven by fluctuations of particle linear velocities �u1

and �u2 of the small frequency ωT ∼ η/ρa2 ∼ 106 s−1. This type of transverse fluctuation
is independent of the longitudinal one. Thermal fluctuations of particle velocities mediate an
important part of the total interaction, which supplements UvdW.

Before consideration of this contribution, we focus at first on some aspects of the derivation
of non-linear dissipative equations, which are useful for understanding the formation of the
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interaction by fluctuations of particle velocities. Let us start with a one-dimensional motion
in the potential V (x) of a particle with the mass m(x), attached to a heat bath, which provides
a friction. A convenient way to proceed is to use the formalism of Caldeira and Leggett [70]
of an infinite set of oscillators in thermal equilibrium. The Lagrangian has the form

L = m(x)

2
ẋ2 − V (x) +

1

2

∑
i

(miẏ
2
i − miω

2
i y

2
i ) − F(x)

∑
i

ciyi (16)

where F(x) = ∫ x dz
√

η(z) is a non-linear coupling to the thermostat. Using the formalism of
Caldeira and Leggett, one can derive the Langevin equation in the limit of high temperatures:

m(x)ẍ +
1

2

∂m

∂x
ẋ2 + η(x)ẋ + V ′(x) =

√
η(x)f (t) (17)

where the average is defined as 〈f (t)f (t ′)〉 = 2T δ(t − t ′). Let us suppose the viscosity η to
be sufficiently big; this separates the big frequency � ∼ η/m from the low frequency V ′′/η
of the viscous motion in the potential V (x). One can also derive from the Lagrangian (16)
the Fokker–Planck equation for the distribution function W , which in the low-frequency limit
depends only on x and t :

∂W(x, t)

∂t
= ∂

∂x

{
W

η(x)

∂

∂x
[V (x) + I (x)] +

T

η(x)

∂W

∂x

}
. (18)

The additional potential in equation (18) is

I (x) = −T

2
ln m(x). (19)

The Langevin (17) and the Fokker–Planck (18) equations are derived independently from the
initial system (16) and do not contain uncertainties since the high-frequency limit is well defined
by equation (17). If we omit two mass terms in equation (17), the high-frequency limit becomes
indefinite (� = ∞) and an attempt to derive the Fokker–Planck equation from the Langevin
equation encounters the Ito–Stratonovich uncertainty [71] as a result of the loose definition of
the high-frequency limit. Note that neither the Ito nor the Stratonovich approach results in the
correct Fokker–Planck equation (18) for a massive particle with a variable viscosity η(x).

To clarify the origin of the effective potential (19), let us represent the variable x in
equation (17) as x(t) + δx(t), where the small correction δx(t) varies rapidly with frequencies
� ∼ η/m and x(t) is a slowly varying variable. In equation (17) one can keep the second
order of δx, considering x(t) as an instant argument. After an averaging over high frequencies,
equation (17) turns into a low-frequency part with two fluctuation-induced terms:

η(x)ẋ +

[
∂V (x)

∂x
− 1

2

∂m(x)

∂x
〈δẋ2〉 − 1

2
√

η(x)

∂η(x)

∂x
〈δx f 〉

]
=

√
η(x)f (t). (20)

By means of the fluctuation-dissipation theorem [72] one can write (see also [73])

〈δẋ2〉 = iT

π

∫ ∞

−∞

dω

mω + iη
= T

m
. (21)

The integration path in equation (21) can be deformed into the far semicircle in the upper
half-plane of complex ω. Hence, 〈δẋ2〉 is determined by high frequencies, and the use of
instant variables, leading to the incorporation of 〈δẋ2〉 into the low-frequency equation (20),
is correct. Analogously,

〈δx f 〉 = −T
√

η

π
P

∫ ∞

−∞

dω

ω(mω + iη)
= T√

η
. (22)

The letter ‘P’ stands for the principal value of the integral, which can be represented as the
integral along the infinite contour consisting of the real axis plus a small circle around zero in
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the upper half-plane and minus the integral around that small circle. The integration along the
infinite contour can be shifted to the far upper half-plane and gives zero, but the integration
around the small circle gives a finite result. Hence, 〈δxf 〉 is determined by the zero-frequency
limit; the use of instant arguments and incorporation of 〈δxf 〉 into equation (20) are not
appropriate. Among the two fluctuation-induced terms in equation (20), only one (with ∂m/∂x)
has meaning and it results in the potential (19). This remains true in a more general case, when
the linearized form of the dynamic equation is

(−mω2 − iωη(ω) + V ′′)δxω = 0. (23)

In this case the mass m is strictly defined by the condition η(ω)/ω → 0 at ω → ∞ and the
potential (19) is determined by the high-frequency limit according to equation (21), when only
a mass term plays a role.

The origin of the potential (19) can also be understood from the following non-rigorous
arguments. One can write formally the free energy F = −T ln(px/h̄), where momentum
fluctuations (p)2 ∼ mT are formed on a short timescale �−1 and fluctuations of the
coordinate (x)2 ∼ T t/η are slow. In the expression

F = −T

2
ln m +

T

2
ln

h̄2η

T 2t
(24)

the first term originates from fast fluctuations of the momentum and corresponds to
equation (19).

The interaction (19) has a simple interpretation. Suppose a classical non-dissipative
particle with the variable mass m(x) moves with the total energy E in the harmonic potential
αx2. For a variable mass the mean displacement 〈x〉 
= 0, since in the region with bigger
mass the particle spends more time having a smaller velocity. One can easily show that, when
m(x) varies slowly on the scale of the particle amplitude, 〈x〉 can be calculated by making
the mass m(0) constant and adding the potential −(E/2) ln m(x). In other words, a particle
tends to spend more time in a region with bigger mass. This conclusion remains correct for
a dissipative case with fast fluctuations of velocity instead of harmonic oscillations, when the
energy E can be replaced as an approximation by the temperature T . This corresponds to the
potential (19).

One can easily generalize this method to the multi-dimensional case. Suppose that in the
high-frequency limit the kinetic energy has the form

K = 1
2mij ( �R)ṘiṘj (ω → ∞). (25)

Then in the equation of motion, where only the kinetic part is kept,

mij ( �R)R̈j +

(
∂mij

∂Rk

− 1

2

∂mkj

∂Ri

)
ṘkṘj = Fi (26)

one can consider the variables again as sums of slow and fast parts Ri(t) + δRi(t). Taking the
average of the quadratic (with respect to δṘ) part produces the fluctuation-induced effective
force

F
ef

i = Fi +
1

2

∂mkj

∂Ri

〈δṘk δṘj 〉. (27)

Taking account of the average 〈δṘk δṘj 〉 = T m−1
kj , the effective force reads

F
ef

i = Fi +
T

2
m−1

kj

∂mkj

∂Ri

= Fi +
∂

∂Ri

[
T

2
ln(det m)

]
. (28)

From here the generalization of equation (19) follows:

I ( �R) = −T

2
ln

[
det m( �R)

]
. (29)
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The additional potential energies (19) or (29) have a fluctuation origin and are mediated by
fast fluctuations of velocity with the typical frequency � ∼ η/m, which form, for each instant
coordinate, the quasi-equilibrium free energy. One can formulate a rule for calculating the
effective fluctuation potential even for a system with a complicated dynamics: one has to
find the kinetic energy (25) in the limit of high frequency and to insert the mass tensor into
equation (29). The method in the form presented is applicable to classical systems with the
kinetic energy proportional to the square of the velocities.

5. Two particles in a fluid and the Euler mass

Suppose that there are two particles in a fluid of radius a separated by the centre-to-centre
distance R. If they perform an oscillatory motion with a high frequency ω, the fluid velocity
obeys the Euler equation everywhere in a fluid excepting in a thin layer of thickness ∼√

η/ρω

close to the particle surfaces, where the full Navier–Stokes equation should be used [67].
Hence for finding the mass tensor (25) one has to solve the Euler equation with the boundary
condition for a normal component of the fluid velocity. For this reason, the mass corresponding
to the high-frequency limit of particle dynamics can be called the Euler mass. For example,
the Euler mass tensor of one particle is [67]

mij = 2π

3
a3(2ρ0 + ρ)δij (30)

where ρ0 is the mass density of the particle.
In the case of two particles in a bulk fluid the Euler mass cannot be calculated analytically

for an arbitrary relation between R and a. Nevertheless, there is a situation where an analytical
calculation of I (R) over the full range is possible. This is the case of two particles confined
between two parallel plates separated by a distance equal to the particle diameter, which
corresponds to the current experiments [75]. Let us suppose the particles to be of cylindrical
shape with the axis of length 2a perpendicular to the plates. In this case, particle and fluid
velocities are directed parallel to the plates and the problem becomes two dimensional. The
velocity of the incompressible Euler fluid can be written as �v = �∇φ with the boundary
condition that the normal derivative ∂φ/∂ �n cancels the normal components of the particle
velocities. Since the scalar φ satisfies the Laplace equation ∇2φ = 0 in two dimensions, one
can use a conformal transformation to convert the geometry into a planar one. If the centres
of two particles localize at the positions Re z = ±R/2, Im z = 0 on the complex z-plane, the
conformal transformation

z =
(

R2

4
− a2

)1/2

coth
w

2
(31)

maps the two circles onto two infinite parallel lines:

Re w = ± ln

(
R

2a
+

√
R2

4a2
− 1

)
(32)

in the complex w-plane. For the plane geometry, the problem can be solved in a straightforward
way. The mass tensor is easily diagonalized by two centre-of-mass motions and two relative
ones. Using the formula (29), one can obtain after some calculations

I (R) = −T ln

[
1 − 2(R2 − 4a2)

a2(1 + ρ0/ρ)

∞∑
n=1

n
(
R − √

R2 − 4a4
)2n

(
R +

√
R2 − 4a2

)2n
+ (2a)2n

]

−T ln

[
1 +

2(R2 − 4a2)

a2(1 + ρ0/ρ)

∞∑
n=1

n
(
R − √

R2 − 4a2
)2n

(
R +

√
R2 − 4a2

)2n − (2a)2n

]
. (33)
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Figure 2. The fluctuation interactions of two cylindrical particles with the axes, of the same length
as the diameter, directed perpendicular to two parallel plates, between which they are confined.
The inter-plate distance is the same as the particle diameter. The dashed curve is I (R) and the solid
curve is the total fluctuation hydrodynamic interaction UvdW(R) + I (R).

At ρ0 = ρ in limiting cases one obtains

I (R) = T

{
− ln(π4/72) + (6/π2)

√
(R − 2a)/a (R − 2a) � 2a

−a4/R4 2a � R.
(34)

I (R) is plotted in figure 2 as a dashed curve. The van der Waals interaction for cylindrical
particles of length 2a can be obtained from equation (9) in the same way as equation (10) was
derived. At (R − 2a) � 2a, for two cylinders of length 2a,

UvdW = −ζ(3)

16
T

(
a

R − 2a

)3/2

(cylinders). (35)

The total interaction UvdW(R) + I (R) is shown in figure 2 by the solid curve, where the close-
particles limit (35) is extrapolated up to the region (R/2a − 1) � 1. The interaction I (R)

is not influenced by the Coulomb effects in a bulk fluid, since it is mediated by fluctuations,
corresponding to an incompressible fluid. Nevertheless, in a restricted geometry, for example
between two charged plates, fluctuation motion in some direction can be restricted, which can
modify the interaction I (R).

6. The Fokker–Planck equation for two particles in a fluid

The low-frequency dynamic equation for particles

ζ
ij

0 ( �R)u
j

1,2 + ζ
ij

1 ( �R)u
j

2,1 = F i
1,2 (36)

is non-linear due to a coordinate dependence of the friction coefficients in equation (36),
which is called the hydrodynamic interaction [74]. The Fokker–Planck equation for the
distribution functionW( �R, t)of two particles in a fluid can be derived similarly to equation (18).
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The result is the following:

∂W

∂t
= ∂

∂Ri

ζ−1
ij

[
W

∂Utot(R)

∂Rj

+ T
∂W

∂Rj

]
(37)

where ζij = (ζ
ij

0 −ζ
ij

1 )/2 and the total interaction potential consists of a mean-field electrostatic
part U(R) and two fluctuation interactions:

Utot(R) = U(R) + UvdW(R) + I (R). (38)

The friction tensor in the limit a � R has the form [74]

ζij = 3πa

[(
1 +

3a

4R
+

9a2

16R2

)
δij +

(
3a

4R
+

27a2

16R2

)
RiRj

R2

]
. (39)

For colloid experiments, which deal with long-time statistics [26, 27], the equilibrium
distribution function W ∼ exp(−Utot(R)/T ) is relevant. In optical tweezers experiments
[28–31] two particles are initially fixed and the statistics of the initial motions after release
is studied. If the friction coefficients ζ

ij

0,1 were coordinate independent, the two methods
would give the same interaction potential. But the situation becomes different for coordinate-
dependent friction coefficients. If, at the moment t = 0, the distribution function was artificially
localized by optical tweezers at the point �R0 (W = δ( �R − �R0)), then the average inter-particle
distance 〈Ri〉 = ∫

d3 RiW after release at t = 0 obeys the relation

∂

∂t
〈Ri〉 = ζ−1

ij F
ef

j (40)

where the effective force is

F
ef

i = −∂Utot

∂Ri

+ T ζip

∂

∂Rq

ζ−1
pq . (41)

This force consists of a potential part and the noise-induced drift; it is measured in the optical
tweezers instant experiments rather than long-time-statistics experiments, which give only the
first potential term. Under experimental conditions [29], the noise-induced drift is small. But if
two particles are electrostatically fixed in the middle plane between two glass plates, separated
by the length h (R � h), the effect of the noise-induced drift on the initial motion is not small:

F
ef

i = − ∂

∂Ri

[
Utot(R) + T

3a

4R

]
. (42)

This equation is valid in the limit of small particle radius compared to R. As one can see
from equation (42), optical tweezers measurements can produce a deviation from a real inter-
action potential.

7. Discussion

As shown in this paper, for hard spheres (no mean-field interaction except an infinite repulsion
on contact) in a fluid there are two types of hydrodynamic fluctuation force: (i) the van der Waals
forces, mediated by fluctuations of sound waves (UvdW), which are similar to the conventional
(electromagnetic) van der Waals interactions, and (ii) forces due to a thermal drift of particles to
the region with a bigger effective mass (I ). Despite the van der Waals interaction (9) formally
coinciding with the electromagnetic van der Waals formula at ε → ∞ [65], the existence of
such effect in hydrodynamics is not trivial, since a calculation on the basis of the hydrodynamic
stress tensor leads to an incorrect conclusion in the absence of the effect (section 3). The
interaction I is also of fluctuation origin. It has a simple mechanical explanation based
on a particle spending more time in a region with a bigger mass, since there its velocity is
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smaller. The proposed hydrodynamic fluctuation interactions provide a long-range (micron-
scale) attraction of the order of kT in contrast to the conventional van der Waals attraction,
which is negligible at the micron scale.

Charged colloidal particles in an electrolyte, strictly speaking, cannot be considered
as hard spheres; nevertheless, the Coulomb effects weakly modify UvdW, as shown in
section 2. The interaction I is not modified by the Coulomb effects in a bulk fluid, but
can be influenced by an electrostatic restriction of fluctuations in the direction perpendicular
to charged confining plates.

The total interaction energy of two particles in a fluid is a sum of the Coulomb repulsive part
(DLVO) [1,2] and the attractive potentialsUvdW and I , as plotted in figure 2. The character of the
resulting interaction depends on the particle charges and the Debye length in a very delicate way.
Formally, the power-law fluctuation attractions always prevail at some distance R0 over the
exponential repulsion. Nevertheless, when λD is not sufficiently small, the resulting potential
minimum is far away and can be indistinguishable in experiments. Reference [76] reported
an absence of attraction. A lucky choice of electrostatic parameters for observing fluctuation
hydrodynamic forces corresponds to a close position of the minimum (R0 − 2a) � 2a.

The experimentally observed attraction satisfies the kBT universality condition, i.e., it is
of the order of kBT in various experiments. This universality is not a trivial property, since
electrostatic and hydrodynamic mean-field energies are a few orders of magnitude bigger than
those at room temperature. The kT universality leads to there being a selection of possible
attraction mechanisms. Perhaps the best candidate satisfying this universality is an attraction
mediated by thermal fluctuations of some physical quantities. Since the two mechanisms
proposed above both lead to attraction of the order of kBT , they are probably relevant in the
interpretation of experimental data on attraction. The next step is to study UvdW and I at
all R for spherical particles in a bulk fluid and for a confined geometry. The contribution of
fluctuating surface waves to the formation of an attraction of particles at liquid–air [8] and
liquid–liquid [33] interfaces should increase the attraction effect.
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